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FEATURE EXTRACTION AND MATCHING
FOR BIOMETRIC AUTHENTICATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a division of and claims benefit of
priority to U.S. patent application Ser. No. 14/274,385
entitled “Feature Extraction and Matching for Biometric
Authentication,” filed on May 9, 2014, and is related to and
claims the benefit of priority to U.S. Provisional Application
Ser. No. 61/878,588, entitled “Image feature Detection,
Authentication, and Information Hiding,” filed on Sep. 16,
2013, each of which is incorporated herein by reference in
its entirety.

TECHNICAL FIELD

The present disclosure generally relates to image com-
parison techniques for determining similarity between two
images and, in particular, to biometric authentication based
on images of the eye.

BACKGROUND

It is often desirable to restrict access to property or
resources to particular individuals. Biometric systems can be
used to authenticate the identity of an individual to either
grant or deny access to a resource. For example, iris scanners
can be used by a biometric security system to identify an
individual based on unique structures in the individual’s iris.

In a typical image-based biometric authentication system,
one or more images are obtained from a person claiming to
be an authorized user. Those images are compared with one
or more reference images that are known to be provided by
one or more authorized users. Only if the claimant-supplied
images match well with one or more reference images, the
claimant can be determined to be an authorized user. A
match between two images, i.c., a measure of similarity
between the two images, can be based on features of those
images. The features can include a collection of one or more
points of interest in the image, and descriptions of portions
of the image surrounding such interest points.

SUMMARY

This specification describes technologies that are well
suited for biometric authentication based on images of the
eye. In particular, an image sharpening technique can aid in
efficient feature detection. A Vascular Point Detection (VPD)
technique can detect the points of interest from visible
vasculature of the eye, and Pattern Histograms of Extended
Multi-Radii Local Binary Patterns (PH-EMR-LBP) and/or
Pattern Histograms of Extended Multi-Radii Center Sym-
metric Local Binary Patterns (PH-EMR-CS-LBP) can effi-
ciently provide description of portions of images surround-
ing a point of interest of vasculature. The visible vasculature
can be obtained using a scleral mask, which can be a binary
image mask that includes white of the eye and excludes an
image portion surrounding the white of the eye from an
ocular image. Matching techniques described herein can
improve the efficiency and/or accuracy of distance or cor-
relation based matching by using outlier detection. The
described techniques also allow for updating templates that
are derived from reference images and are used for authen-
tication (generally referred to as enrollment templates in the
discussion below), so that the best quality and diverse
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images are used in authentication, e.g., to minimize naturally
occurring variances in images captured at different locations
and times.

In a feature extraction and pattern matching system,
image sharpening can enable vascular point detection (VPD)
for detecting points of interest from visible vasculature of
the eye. Pattern Histograms of Extended Multi-Radii Local
Binary Patterns and/or Pattern Histograms of Extended
Multi-Radii Center Symmetric Local Binary Patterns can
provide description of portions of images surrounding a
point of interest, and enrollment and verification templates
can be generated using points detected via VPD and the
corresponding descriptors. Inlier point pairs can be selected
from the enrollment and verification templates, and a first
match score indicating similarity of the two templates can be
computed based on the number of inlier point pairs and one
or more parameters of a transform selected by the inlier
detection. A second match score can be computed by apply-
ing the selected transform, and either or both scores can be
used to authenticate the user.

An enrollment template can be a collection of interest
points such as vascular points (VPD) and corresponding
features such as Enhanced Multi-Radii Local Binary Pat-
terns (EMR-LBP), Pattern Histograms of Enhanced Multi-
Radii Local Binary Patterns (PH-EMR-LBP), Pattern histo-
grams of Enhanced Multi-Radii Center-Symmetric Local
Binary Patterns (PH-EMR-CS-LBP), and Enhanced Multi-
Radii Center-Symmetric Local Binary Patterns (EMR-CS-
LBP). In some implementations, an enrollment template can
be created only if the acquired image exceeds a certain
threshold based on ratio of VPD points to that of size of
segmented scleral region. More than one enrollments are
possible for a single user. Enrollment templates can be
updated to accommodate behavioral and/or environmental
variations affecting the acquired scans. Updating the enroll-
ment templates using verification can be based on quality of
a candidate verification template, match score, and/or other
image and exposure similarity measures.

Accordingly, in one aspect, a computer-implemented
method includes obtaining a sharpened image based on a
number of captured images. One or more captured images
can include images of a vascular structure. Moreover, the
method includes detecting several vascular points in the
sharpened image and, for each one of a number of detected
vascular points, generating a one or more different local
image descriptors. The method also includes generating a
template that includes one or more of the detected vascular
points and their respective local image descriptors. Other
embodiments of this aspect include corresponding systems,
apparatus, and computer programs.

In one implementation, obtaining a particular sharpened
image includes selecting one or more images from the
several captured images and averaging the selected images
to generate an average image. The method also includes
convolving the average image with a Laplacian of Gaussian
(LoG) kernel to obtain a convolved image, and subtracting
each pixel of the convolved image from a maximum pixel
value, to obtain a difference image. In addition, this imple-
mentation of the method includes multiplying, in a pixel-
wise manner, the difference image and the average image, to
obtain the particular sharpened image. In some implemen-
tations, instead of using a LoG kernel, computing the
difference image and multiplying the difference image and
the average image, a number of Gabor kernels oriented at
different angles can be used for convolving the average
image, so as to obtain the sharpened image directly.
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In another implementation, the average image can be
convolved with a set of even Gabor kernels to obtain the
sharpened image. The set of even Gabor kernels that are
oriented across various angles can be tuned based on several
parameters, such as the resolution and scale of the input
image, and average width of visible vasculature. This con-
volved image maybe used instead of, or in addition to, above
mentioned LoG-based sharpened image.

In one implementation, detecting a number of vascular
points includes selecting a point in the sharpened image as
a candidate vascular point. Then, several (e.g., N where N is
greater than one) first neighborhood points according to first
window centered on the candidate vascular point can be
identified. In addition, several (e.g., N) other second neigh-
borhood points according to second, different window cen-
tered on the candidate vascular point can also be identified.
In this implementation, the method further includes deter-
mining N states where N is greater than one. Each of the N
states corresponds to one neighborhood point in the N points
of'the first neighborhood of points. A state can be determined
by performing a comparison based on, at least in part,
respective intensities of one of the first neighborhood points,
i.e., one of the N points according to the first window, a
corresponding point of the second neighborhood, i.e., one of
the N points according to the second window, and the
candidate vascular point. The method can also include
aggregating the N states, and designating the candidate
vascular point as a vascular point based on, at least in part,
a value of the aggregated states.

In some implementations, a geometric distance between
the candidate vascular point and a first neighborhood point
in the first window is less than a geometric distance between
the candidate vascular point and a first neighborhood point
in the second window, where the first neighborhood point in
the second window corresponds to the first neighborhood
point in the first window. The comparison can include
testing if an intensity of the point in the first neighborhood
of N points is greater by a first threshold than an intensity of
the candidate vascular point. Alternatively, or in addition,
the comparison can include testing if an intensity of the
corresponding point in the second neighborhood of N points
is greater by the first threshold than the intensity of the
candidate vascular point. Determining a corresponding state
can include setting the state to a first value (e.g., a logical
high value or “1”) if any of the two tests is true, and setting
the state to a second value (e.g., a logical low value or “07),
otherwise. In one implementation, aggregating the N states
includes summing the N states, and designating includes
testing if a summed value of the aggregated states exceeds
a selected count. The selected count can be N or, in some
implementations, can be less than N.

Another comparison can include testing whether the
intensity of any point in the first neighborhood of N points
is greater than a second threshold, and/or testing whether the
intensity of the corresponding point in the second neighbor-
hood of N points is greater than the second threshold.
Determining the corresponding state can include setting the
state to a second value (e.g., a logical low value or “0”) if
any of the two tests is true.

In some implementations, the method includes perform-
ing the selecting, identifying, determining, aggregating, and
designating for a number of points in the sharpened image,
and setting each candidate vascular interest point designated
as a vascular point to a first value (e.g., a logical high value
or “I””) and setting other candidate vascular interest points to
a second value (e.g., a logical low value or “0”), to obtain a
binary vascular map (BVM) representing veins. The BVM
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can be thinned by excluding at least one vascular point that:
(1) corresponds to the boundaries across the width of a
vasculature, and (ii) was set to the first value. The method
can also include locally suppressing one or more vascular
points that were set to the first value. The local suppression
can be based on, at least in part, a gradient magnitude map
relating to a portion of the sharpened image or relating to the
entire sharpened image.

In some implementations, generating the respective one
or more local image descriptors includes computing at least
one of: (i) a pattern histogram of extended multi-radii local
binary patterns (PH-EMR-LBP) of an image region sur-
rounding the detected vascular point, and (ii) a pattern
histogram of extended multi-radii center-symmetric local
binary patterns (PH-EMR-CS-LBP) of an image region
surrounding the detected vascular point.

In another aspect, a computer-implemented method for
matching one or more verification templates with one or
more enrollment templates includes identifying a number of
matching point pairs. Each matching point pair includes a
first point from a particular verification template and a
corresponding second point from an enrollment template.
Each first point includes: (i) a location of a point of interest
in a verification image corresponding to the verification
template, and (ii) a number of different types of descriptors,
each one describing a locality surrounding the point of
interest in the verification image. Each second point
includes: (i) a location of a point of interest of an enrollment
image corresponding to the enrollment template, and (ii) a
number of different types of descriptors, each one describing
a locality surrounding the point of interest in the enrollment
image.

The method also includes obtaining several inlier point
pairs selected from the a number matching point pairs by
performing outlier detection across the verification and
enrollment templates. In addition, the method includes cal-
culating a match score based on the several inlier point pairs
(e.g., a stage 1 match score), using a geometric transforma-
tion identified during outlier detection as part of pre-pro-
cessing (e.g., in computing a stage 2 match score), or both.
Other embodiments of this aspect include corresponding
systems, apparatus, and computer programs.

In one implementation, identifying the several matched
point pairs includes, for each first point in the verification
template, calculating respective distances between the
descriptors associated with the first point and descriptors
associated with one or more of the second points of the
enrollment template. One of the second points can be
designated as corresponding to the first point based on the
respective distances and, thus, a match point pair that
includes the first point and the corresponding second point
is identified.

Calculating a respective distance between the descriptors
associated with a particular first point in the verification
template and descriptors associated with a second point of
the enrollment template can include calculating a distance
between each descriptor associated with the particular first
point and each corresponding descriptor of the second point
of the enrollment template. The calculated distances can be
combined as a weighted average to obtain the distance
between the descriptors associated with the particular first
point and the descriptors associated with the second point of
the enrollment template.

In one implementation, identifying the several matching
point pairs according to a voting method includes, for each
first point in the verification template, calculating respective
distances between each of the descriptors associated with the
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first point and a corresponding descriptor associated with
one or more second points of the enrollment template. A
number of distances not exceeding respective distance
thresholds can be counted, and one of the second points can
be designated as corresponding to the first point based on the
count of the number of distances. Thus, a match point pair
including the first point and the corresponding second point
is generated.

In various implementations, calculating respective dis-
tances can be calculated as a Hamming distance, a Euclidean
distance, a Manhattan distance, a correlation, or a Mahalano-
bis distance. In some implementations, the local (non-
binary) descriptors can be shortened using principal com-
ponent analysis (PCA) to eliminate dimensions that do not
contribute to local descriptor variances. A particular descrip-
tor can be derived using Extended Multi-Radii Local Binary
Patterns (EMR-LBP), Histograms of Extended Multi-Radii
Local Binary Patterns (H-EMR-LBP), Patterned Histograms
of Extended Multi-Radii Local Binary Patterns (PH-EMR-
LBP), Extended Multi-Radii Center Symmetric Local
Binary Patterns (EMR-CS-LBP), Histograms of EMR-CS-
LBPs (HCS-LBP), Pattern Histograms of EMR-CS-LBPs
(PH-EMR-CS-LBP), Histograms of Oriented Gradients
(HoG), Speeded Up Robust Features, (SURF) or Fast Retina
Keypoint (FREAK). Obtaining the several inlier point pairs
can include using random sample consensus (RANSAC),
M-estimator sample and consensus (MSAC), or
GROUPSAC, to align the first points to the corresponding
second points.

In some implementations, calculating the match score
includes computing correlation of detected inlier points’
locations from the matched first points and corresponding
second points. Computing the first match score also includes
additional parameters and procedure besides location corre-
lation such as number of the inlier point pairs and one or
more parameters of the aligning geometric transformation. A
parameter of the geometric transformation can be a change
in scale of the verification image as a result of the calculated
geometric transformation from inlier point pairs or a change
in angle of the verification image as a result of the geometric
transformation from inlier point pairs. In one implementa-
tion, both parameters are used in computing the first match
score. In other implementations, depending on the transfor-
mation type, additional parameters such as shear maybe
used. Other computed measures of the geometric transfor-
mation showing its deviation from the genuine distribution
are also acceptable. In some implementations, the method
includes, prior to identifying the candidate (inlier) points,
modifying the averaged verification image via Gabor filter-
ing. The enrollment template can also be modified via Gabor
filtering.

In some implementations, computing the match score
includes computing a second match score by applying the
geometric transformation to the verification image to create
a transformed image. The method also includes filtering the
transformed image and encoding the oriented local binary
pattern versions of the transformed image, and applying the
same process to the image used for the enrollment template.
Each version can include a number of layers wherein each
layer corresponds to a distinct dimension of the encoding.
The method can further include comparing one or more
corresponding tiles in each layer of the encoded transformed
image and the encoded image corresponding to the enroll-
ment template, to obtain a respective layer measure for each
layer. The layer measures can be aggregated to obtain the
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second match score. The filtering can include Gabor filtering
or logarithm of Gabor filtering, and the encoding can include
Gray coding.

In some implementations, the method includes excluding,
prior to comparing, one or more tiles corresponding to a
region substantially lacking visible vasculature. Comparing
corresponding tiles can include calculating a Hamming
distance, a normalized Hamming distance, or a sliding
window correlation between the corresponding tiles. The
method can further include computing a first match score in
addition to the second match score. The first match score can
be computed by computing a correlation between coordi-
nates of the two corresponding points, from the verification
and enrollment templates, respectively, of the inlier point
pairs, and can be based on parameters such as a number of
the inlier point pairs and one or more parameters of the
geometric transformation, and/or be based on a function of
the number of inlier point pairs. The match score can then be
computed as a weighted sum of the first match score and the
second match score.

In one implementation, the correlation for first match
score includes computing

Cx +Cy
5

where the coordinates of the inlier points across the verifi-
cation and enrollment templates include the X and Y coor-
dinates of each point in the pairs, and Cx and Cy are
correlations of the X and Y coordinates, respectively, of
inlier matched points across the verification and enrollment
templates. The Stage 1 match score can be computed as:

Cx+ Cy
( 5 ]*Ing(N)

RAY
(1 +Jlog, (RS + 0.001)|)*(1 +(ﬁ] ]

In this computation, N is the number of the inlier point pairs,
RS is a change in scale of the verification image as a result
of the calculated registration geometric transformation, and
RA is a change in angle of the verification image as a result
of the calculated registration geometric transformation. The
method can further include excluding the first match score
from the match score if at least one parameter of the
geometric transformation lies outside a nominal range of
that parameter. RS and RA can be augmented by shear when
affine transformation is assumed. The first stage match score,
in terms of a function of Cx, Cy, N, and the transformation
matrix-derived parameters, can also be directly learned
using labeled dataset of impostor and genuine comparisons
to train a classifier such as an artificial neural network or
linear discriminant analysis. Optionally, a PCA preprocess-
ing stage maybe applied before classification.

In some implementations, instead of transformation-ma-
trix-derived parameters RS and RA, another function of the
transformation can be directly calculated from the its matrix
elements. Considering the transformation matrices derived
from genuine and impostor comparisons, it is desired to
create a function of corresponding transformation matrix
elements yielding maximum genuine-impostor separation in
its distribution. One way to achieve this end is to use the
transformation matrices of a labeled dataset of impostor and
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genuine comparisons to train a regression function and
maximize a measure of classifiability, such as Fisher dis-
criminant ratio.

In another aspect, a computer-implemented method for
updating enrollment templates includes receiving a verifi-
cation template that includes several points of interest. Each
point of interest is associated with a number of different
respective descriptors that each describes one or more
localities surrounding the corresponding point of interest.
The method also includes computing a match score for the
verification template by comparing the verification template
with one or more enrollment templates in a collection of
enrollment templates. The verification templates can be
added to the collection of enrollment templates based on, at
least, the match score matching or exceeding an enrollment
threshold.

In some implementations, the method includes, for each
template in the collection of enrollment templates, generat-
ing a respective match score with one or more other tem-
plates in the collection of enrollment templates. A respective
median match score is computed for the template, and a
template having a minimum median match score can be
removed from the collection of enrollment templates. Other
embodiments of this aspect include corresponding systems,
apparatus, and computer programs.

In some implementations, the method may include gen-
erating quality score for enrollments using thinned BVM
and the scleral mask. The scleral mask can be a binary image
mask that includes white of the eye and excludes an image
portion surrounding the white of the eye from an ocular
image. Quality score may be the ratio of number of detected
vascular points in thinned BVM to number of true pixels
(1’s) in scleral mask. The method also includes removing
enrollment templates which do not pass a certain quality
score.

In some implementations, the method includes adjusting
the match score according to an exposure difference, an
influence threshold, or both. The exposure difference can
include a difference between a verification exposure tem-
plate associated with the verification template and an enroll-
ment exposure template associated with the enrollment
template. The method can also include generating the veri-
fication exposure template and/or the enrollment exposure
template.

In some implementations, generating an exposure tem-
plates (for enrollment and/or verification) includes partition-
ing an ocular region of interest (ROI) corresponding to the
enrollment and/or verification images into two or more
sections, and generating for each section a histogram of
intensities representing for each intensity in the histogram,
a number of pixels in the section of the ROI having
substantially that intensity. The ROI can be an area of the
image centered on the eye. In some implementations, this
area is found by an eye finder. In some implementations, the
ROI is found by cropping an image of an eye according to
a bounding box of a scleral mask and by padding the
cropped image with a specified number of pixels (e.g., 50
pixels). In one implementation, the ROI is partitioned into
four quadrants. In some implementations, an image of an
eye can be cropped using a bounding box from one eye
corner to another eye corner and from one eye lid to another
eye lid. The cropped image can be padded with a specified
number of pixels.

In one implementation, the exposure difference is -1
times an exposure similarity. The method includes deter-
mining for each quadrant j: one or more of (i) a normalized
absolute value of a histogram differences (ABSNdist_j), (ii)
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a histogram intersection similarity (INTRsim_j), (iii) a cor-
relation coefficient similarity of histograms (CORRsim_j),
and (iv) a Bhattacharyya distance (BHATdist_j). The expo-
sure similarity can be computed as:

(- ABSNdist_j-=;BHATdist_j+=,INTRsim_j+
3,CORRsim_).

Other linear or nonlinear combinations of the above four
metrics are possible.

In one implementation, generating one or more exposure
templates includes generating a number of exposure mea-
sures. Each one of the exposure measures can be an expo-
sure metering of the ROI included in EXIF file of the image
(EXIF measure), a statistical parameter of a Y component of
a YUV image, and a statistical parameter of a G component
of an RGB image.

In some implementations, an exposure difference and/or
an exposure similarity is computed based on one or more
histogram measures. The different histogram measures can
be any one of: a normalized absolute value of a histogram
differences (ABSNdist), a histogram intersection similarity
(INTRsim), a correlation coefficient similarity of histograms
(CORRsim), and a Bhattacharyya distance (BHATdist).

In some implementations, the method may include, prior
to computing the match score, ordering the collection of
enrollment templates according to respective exposure dif-
ferences between a verification exposure template associ-
ated with the verification template and each enrollment
exposure template associated with each enrollment template
in the collection of enrollment templates. As such, the
verification of the verification template can be expedited
because generally the verification proceeds by comparing a
verification template with several enrollment templates, but
starting with those that have lowest exposure difference and,
thus, more likely to correctly match the verification tem-
plate.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1A schematically depicts an example two-stage
system for generating enrollment templates.

FIG. 1B schematically depicts an example two-stage
system for generating a verification template and comparing
that template with an enrollment template, thereby deter-
mining the similarity between the two images corresponding
to the two templates.

FIGS. 2A-2D illustrate an example image sharpening to
aid vascular point detection and local image descriptor
generation.

FIGS. 2E and 2F illustrate an example vascular point
detection procedure.

FIGS. 3A-3C depict, respectively, an example binary
image of detected vascular points from an eye, a correspond-
ing thinned binary image, and an overlay of the thinned and
the original binary images.

FIGS. 4A and 4B depict example masks used to sparse a
thinned binary image representing detected vascular points.

FIG. 4C depicts a sparse binary image corresponding to
the thinned binary image depicted in FIG. 3C.

FIGS. 5A-5C respectively depict an example original
image of an eye, an example region of interest (ROI) mask,
and the ROI from the original image.
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FIGS. 5D-5F respectively depict a binary vascular map
(BVM) corresponding to the ROI depicted in FIG. 5C, a
corresponding thinned BVM, and a corresponding sparse
BVM, each of which is overlaid on the original image
depicted in FIG. 5A.

FIG. 6 depicts a Gabor filtered oriented local binary
patterns (OLBP) image corresponding to an example eye
vasculature.

FIGS. 7A-7C illustrate generating Gray coded OLBP
patterns corresponding to an example pixel window.

FIG. 8 illustrates an example process of updating enroll-
ment templates on a rolling basis.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIGS. 1A and 1B schematically depict an example multi-
stage biometric system for generating and storing enrollment
templates of visible vasculature that can be used for user
authentication. In one implementation, the visible vascula-
ture corresponds to the vasculature seen in the white of the
eye. The white of the eye has a number of layers. The sclera
is an opaque, fibrous, protective, layer of the eye containing
collagen and elastic fiber. The sclera is covered by the
conjunctiva, which has a particularly large number of blood
vessels and veins that that run through and over it. The
episclera is covered by the bulbar conjunctiva, which is a
thin clear membrane that interfaces with the eyelid or the
environment when the eyelid is opened. Blood vessels
(vasculature, in general) run through all of these layers of the
white of the eye and can be detected in images of the eye.
During user authentication, one or more images of a user’s
eye are captured, one or more verification templates are
generated from the captured image or images, and the
identity of the user can be verified by matching the corre-
sponding vascular structures as expressed in the enrollment
and verification templates.

It should be understood that the systems and methods
described with references to FIGS. 1A and 1B are not
limited to eye vasculature. For example, biometric authen-
tication can be performed using vasculature of the ear. In
particular, using a near infrared camera (for instance if one
is implemented near earpiece of a phone) and an infrared
light source, images of the ear vasculature can be obtained
and user authentication using those images can be performed
as described herein.

In step 102, images of a user’s eyes are captured using an
image sensor, e.g., a camera, that is associated with a device
to which access by the user is to be authenticated (e.g., a
smart phone, a smart watch, smart glasses, a notebook
computer, a tablet computer, etc.). By way of illustration, the
camera can be a digital camera, a three-dimensional (3D)
camera, or a light field sensor. In some implementations, the
camera can be an inward facing module in a wearable device
with a spectacle form factor, and used to capture images of
the user’s white of the eye for biometric authentication. The
images can be captured either in still mode or in video mode.
In some implementations, the user may be prompted (by
visual, or audible, or haptic feedback) to look to the left or
right or up or straight while the image is captured. Looking
to the left or right can expose a larger area of the white of
the eye to the right or left of the iris for data capture, while
looking straight can provide two smaller segments of the
white of the eye to the left and right of the iris in each eye.
In step 104, a general region of interest is identified, e.g., one
or both eyes may be located. To this end, Viola-Jones
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algorithms trained on different glancing eye images can be
used. Thereafter a gaze tracking algorithm such as that using
Haar filters can be used to quantize the amount of gaze to
acquire one or more images, once a selected gaze direction
is detected. Typically, the acquired images are cropped to
obtain RGB images of one or more eyes. Hereafter, “image”
or “captured image” generally refers to a cropped RGB
image of an eye.

The images that are captured from an image sensor can
have varying quality due to, for instance, exposure and
motion blur artefacts. In optional step 106, several images
can be registered (i.e., spatially aligned) and averaged to
reduce image noise. In some implementations, image cor-
relation methods are used to measure the dissimilarity
between the obtained images in order to align the images for
averaging and discard those that are most different (e.g. due
to motion blur or eye blink) and, hence, are not suitable for
registration and averaging. For example, four images cap-
tured in sequence can be averaged after registration if the
images are not too different. The number of images that are
averaged can depend on the frame rate and noise level of the
image sensor. When several averaged images are generated,
a quality metric can be used to select the highest-quality for
use in subsequent steps. In some implementations, standard
deviation of the pixel values of the green channel of a
sharpened image (derived as described below) can be used
as a quality metric. Other quality metrics are possible.

The images produced by the quality check step 106 are
used to produce templates for a two-stage matcher, after
which the original images are usually discarded for security
and privacy reasons. A stage 1 template can include a
number of (interest point, feature vectors) elements. A stage
2 template can include encoded (e.g., Gray coded) oriented
local binary patterns (OLBP) corresponding to the original
images. In an enrollment mode (described below), one or
more captured images are designated as enrollment images
and enrollment templates are generated therefrom. In some
implementations, corresponding exposure templates based
on local histograms of exposure profiles of the captured
images are generated and stored. In an authentication/veri-
fication mode (also described below), one or more captured
images are designated as verification images, and verifica-
tion templates are generated therefrom to match against
enrollment template.

With reference to FIG. 1A, in Stage 1, one or more
averaged images, which can be enrollment images or veri-
fication images, are preprocessed at step 108, and features
from the preprocessed images are extracted at step 110, to
generate one or more Stage 1 templates. In Stage 1, the
preprocessing can include image sharpening or Gabor fil-
tering, and the feature extraction can include vascular point
detection (VPD) and feature descriptors (PH-EMR-LBP,
PH-EMR-CS-LBP, SURF, EMR-LBP, HoG and FREAK),
and their PCA preprocessing, all of which are described in
detail below. In Stage 2, one or more averaged images are
preprocessed at step 112, and features from the preprocessed
images are extracted at step 114, to generate one or more
Stage 2 templates. In Stage 2, the preprocessing can include
Gabor filtering and the feature extraction can include detec-
tion of oriented local binary patterns (OLBP), for example.
The enrollment templates, prior to storing, can be encrypted
at step 116.

In the verification mode, i.e., when verification images are
processed, Stage 1 at step 110 includes identifying candidate
interest points and feature descriptors that are matched with
enrollment template to derive a geometric transform (e.g., a
affine transformation, or self-similarity transformation) from
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detected inliers and computing a first match score based on
one or more parameters of the identified transform and inlier
coordinates. In Stage 2 at step 114 includes transforming the
preprocessed verification image using the identified geomet-
ric transformation, Gabor filtering and phase thresholding,
and encoding the result with OLBP to get the stage 2
verification template, and computing a second match score
using correlation of the tiled OLBP layers of verification and
enrolled templates. More than one first match score can be
computed by repeating the step 110, each repetition corre-
sponding to a different geometric transform that is identified
in that repetition. The one or more first match scores and the
second match score can be combined in step 118 (FIG. 1B),
and the verification image or images can be determined to be
authentic based on the combined score. In some implemen-
tations only the first match score or scores are used in
determining authenticity while in other implementations, the
first match score may be discarded based on one or more
parameters of the corresponding geometric transformation.
In some implementations, more than one first and second
match scores can be computed by repeating the steps 110
and 114. The one or more first match and second match
scores can be combined in step 118 (FIG. 1B), and the
verification image or images can be determined to be
authentic based on the combined score. In some implemen-
tations, the combination rule can be the max rule, the
product rule, or the sum rule. In some implementations, the
combination rule can be a linear mixture determined by
linear discriminant analysis.

Specifically, as depicted in FIG. 1B, Stage 1 processing
and analysis includes determining correlation between cor-
responding locations in enrollment and verification tem-
plates, comparing image descriptors of the enrollment and
verification templates that describe localities surrounding
detected points of interest in images corresponding to those
templates to find a spatial correspondence of the points of
interest, and rejecting outlier points of interest. At this stage,
a registration transformation matrix, plus a match score is
produced. The transformation matrix can be used to register
the incoming verification images for the Stage 2 matcher. In
some implementations, Stage 1 match score is used by itself
to make a decision as to whether the verification image is
authentic without proceeding to Stage 2. In some implemen-
tations, if stage 1 fails to compute or fails to provide a
registration matrix within the acceptable scale, rotation,
and/or shear limits, stage 2 may proceed to produce a match
score on its own using no or an auxiliary registration matrix
provided by, for instance, step 104, based on the boundaries
of the iris within the ROI.

Image Sharpening

In some implementations, preprocessing (step 108) can be
used to enhance the visibility of vasculature in the captured
images. One such method is selecting a color component
from the RGB image data that can maximize the contrast
between vasculature and surrounding white of the eye. In
some implementations, this image can include of a linear
combination of blue and green layers. Specifically, in one
implementation, each averaged image is sharpened to obtain
a corresponding sharpened image using a three-step process.
The first step includes convolving the pixel values of green
channel or part of the blue and green channels of an
averaged image derived from one or more captured images
with a Laplacian of Gaussian (LoG) kernel, to obtain a
convolved image. The second step includes subtracting the
LoG filtered image from the maximum value attainable in
the image.
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Finally, in the third step each pixel of the processed image
obtained from the second step is multiplied with the corre-
sponding pixel of the averaged image, to obtain a sharpened
image. FIG. 2A, for example, depicts an averaged image of
an eye obtained from one or more captured images. FIG. 2B
depicts the corresponding green channel, and FIG. 2C
depicts the corresponding LoG filtered image. The standard
deviation of the sharpened imaged obtained in the third step
can be the image quality metric used in sorting a sequence
of averaged images and selecting an averaged image for
further processing. In one implementation, a LoG kernel
used for sharpening can be expressed as:

1 X —y? Pyt
LoG Kernel = _ﬁ(l - ]exp 202

where the filter kernel size is 5x5 pixels with a Gaussian
standard deviation (0) of 0.4. Parameters of the LoG filtering
can be optimized based on the resolution of the acquired
image. The above example parameters were selected for a
cropped eye image having approximate dimensions of 100x
110 pixels (20 pixels). The number of retained quality
sorted sharpened averaged images can vary according to the
application. For example, if the application is generating and
storing enrollment templates, the top four sharpened aver-
aged images may be retained. A different number of images,
such as two, may be retained if the application is at the
verification stage.

In some implementations, in addition to the LoG-based
image sharpening, another enhanced copy of the averaged
image can be obtained by convolving with bank of Gabor
filters defined by:

S1[x? 42
Geven(X, . £, 0) = expy —| = + = | jcos(2n fx’)
2102 o3
S1[x? 2
Goad(, ¥, f,0) = expy = | = + = | sin2r fx')
2102 o3

where x'=x sin(0)+y cos(8) and y'=x cos(8)-y sin(8) ox and
oy define the standard deviation of the Gaussian envelope
along x-axis and y-axis respectively, f is the frequency of the
modulating sine or cosine, and 6 is the orientation angle of
the kernel, varied 6 times, from 0 to 5mt/6, each /6 radians
apart. The resulting six filters are used for aforesaid image
enhancement. In some implementations, only the magnitude
of the odd or even part of the Gaussian filter bank may be
used. In some implementations, f is 0.22 and o,=0,=1.9.
These values can change with the resolution of the ROI. In
one implementation, only even Gabor filters are used to
enhance averaged image.

In some implementations, additional preprocessing of the
sharpened averaged images includes image histogram and
contrast adjustments such as Contrast Limited Adaptive
Histogram Equalization (CLAHE). CLAHE generally oper-
ates in small regions of the image called tiles. Typically, each
tile’s contrast is enhanced such that the histogram of the
output approximately matches the histogram specified by a
particular distribution (e.g., uniform, exponential, or Ray-
leigh distribution). The neighboring tiles are then combined
using an interpolation (e.g. bilinear interpolation) to elimi-
nate any artificially induced boundaries. In some implemen-
tations, the image region can be enhanced by selecting a
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linear or nonlinear combination of the red, green, or blue
color components that has the best contrast between the
vessels and the background. For example, the green com-
ponent can be preferred in a RGB image of the eye, because
it can provide the best contrast between vessels and the
background. In some implementations, green and partial
blue pixel values can be used. In some implementations,
CLAHE preprocessing is not used. A Region of Interest
(ROI) can be selected from the averaged image prior to the
three-step sharpening, for example, by applying a scleral
mask. A check can be used to ensure the soundness of the
selection of the ROI. For example, if the area selected by
applying the scleral mask is not at least a certain specified
percentage (e.g., about twenty five percent of the averaged
image size), the corresponding image is removed from
further processing.

Vascular Point Detection

Various point detection algorithms can be used to identify
salient or interest points within a region of interest (step
104). Salient or interest points are typically where poten-
tially identifiable vascular or otherwise specific patterns of
interest generally occur. Some known techniques that can be
employed for interest point detection include the Speeded
Up Robust Features (SURF) algorithm, Accelerated Seg-
ment Test (FAST) algorithm, and Harris and Stephens (HS)
algorithm. These generic techniques often do not detect
most/all the points on the vascular patterns within an image
region. Therefore, in some implementations, a Vascular
Point Detection (VPD) algorithm is used. The VPD is a point
finder that tends to find points that are centered/located on
vessel-like objects. The VPD algorithm considers distal
neighborhoods of a potential interest point (pixel) of an
intensity image to determine if that point is located on an
object of interest, e.g., a vessel in a vascular pattern. The
VPD algorithm can be adjusted based on, for example, the
scale and resolution of an image, pixel intensity dynamics,
and a specified point detection sensitivity, among other
factors.

In one implementation of the VPD algorithm a region of
an image is selected, as depicted in FIG. 2D. Various distal
neighborhood points, as depicted in FIG. 2E are considered
for VPD calculations. With reference to FIG. 2F, in an
example pixel neighborhood centered on an interest point
candidate PO two pattern windows 202, 204 are identified. In
some implementations, additional pattern windows can be
embedded within each pixel neighborhood. Each pixel
neighborhood is laid on potential point of interest (e.g., P0).
The sizes of the two pattern windows 202, 204 are different.
In one implementation, shown in FIG. 2F, the first pattern
window is a 5x5 pixel kernel which includes points P1
through P8, while the second pattern window is a 7x7 pixel
kernel which includes points P1' through P8'. Each pattern
window includes eight peripheral pixels that are used for
computations described below.

To determine whether the center point PO is a point of
interest, the VPD calculates the difference in intensities
between candidate pixel (P0) and 16 other pixels (i.e., P1-P8
and P1'-P8') in the neighborhood of the pixel P0. Each
comparison is considered to be a state and each state is
defined as:

Si=((Pi—PO)>1)|[((Pi"-PO)>t)

Specifically, the intensity of PO is compared with inten-
sities of corresponding edge pixels Pi and Pi'. If the differ-
ence between the intensities of PO and Pi exceeds an
intensity threshold t, or if the difference between the inten-
sities of PO and Pi' exceeds the intensity threshold t, the state
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is set to a high logical value (e.g., “1”). Otherwise, the state
is set to a low logical value (e.g., “0”). The intensity
threshold t can be changed based on the quality of images
and the amount of noise in the images. In this example, a
maximum counter value is eight, as there are eight com-
parisons. If the sum of all eight states exceeds a certain
count, e.g., 6, the candidate point is labelled or designated as
a vascular point.

In some implementations, if an intensity value of any
pixel in a window is greater than a second intensity thresh-
old, the center point can be discarded from further analysis.
In this situation, the pixel may represent an area of the image
where aberrations, glare, or other image artifacts may lead to
a faulty identification of a candidate point. For example, if
a second intensity threshold is 240, where the maximum
intensity of 256, and if the intensity of an edge pixel exceeds
240, the corresponding center pixel is discarded from a pool
of potential VPD candidate points.

The values provided above are example values, and other
values can be used. For example, more than two windows
can be used, the sizes of either or both windows can be
different than those in this example, and the threshold values
and intensity scale can also be adjusted based on various
factors. For example, an image with relatively low resolu-
tion can use two small pixel windows, such as one 3x3
window and one 5x5 window, while a relatively high
resolution image can use three larger pixel windows, such as
one 7x7 window, one 9x9 window, and one 11x11 window.
The VPD process can be used on all pixels of an image
region, or a subset of pixels, such as each pixel within a
particular distance from the border of the image region. In
general, the VPD is a local neighborhood operation and a
sliding window technique can be employed in determining
the states as described above and in deciding whether a
candidate point is a vascular point. As such, the VPD
binarizes the ROI of an eye by assigning to all points
determined to be vascular points a logical high value (e.g.,
“17), and by assigning to all other candidate points a logical
low value (e.g., “0”). The resulting binary mask is referred
to as Binary Vascular Map (BVM) as depicted in FIG. 3A.

In a BVM, all blobs that are less than a predefined number
of pixels in size can be removed by considering them to be
non-vascular points. In some implementations, each indi-
vidual connected vascular structure (blob) obtained from a
BVM can be thinned, resulting in a thinned Binary Vascular
Map or thinned BVM, as depicted FIG. 3B. The thinning
process creates a vascular trace traversing through the center
of vasculature. An overlay of an example thinned BVM on
a corresponding BVM is shown in FIG. 3C.

In some implementations, in order to further reduce the
number of vascular points, a local point suppression can be
applied. In general, local suppression is based on gradient
magnitude map obtained from a gray scale sharpened image
of'an ROI. The gradient magnitude map can be obtained by
convolving a Sobel filter with the gray scale image to
emphasize edges. The Sobel operator generally convolves
the ROI image with 3x3 horizontal and vertical gradient
kernels to yield gradient magnitude mask. Example gradient
kernels are shown in FIGS. 4A and 4B.

In one implementation, a thinned BVM is divided into
neighborhoods of 5x5 non-overlapping blocks. In each
block, if any thinned BVM points are present, only one
vascular point that maps to highest gradient value in the
corresponding gradient magnitude mask is chosen. This
process of local suppression reduces the number of vascular
points by almost half, thus reducing the template size and
aiding the process of matching. The reduced set of interest
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points is referred to as “sparse VPD points” hereafter. An
example set of sparse VPD points corresponding to the
example BVM depicted in FIG. 3B is shown in FIG. 4C. The
5%5 neighborhood is illustrative only, and can be changed
based on the image resolution and scale. FIGS. 5A-5F depict
an example original image, an example ROI mask, the ROI
from the original image, a BVM corresponding to the ROI
overlaid on the original image, a corresponding thinned
BVM overlaid on original image, and a corresponding
sparse BVM (also called sparse VPD) overlaid on the
original image.

In one implementation, candidate points from other point
finders such as FAST, HS, and SURF can be added to the
sparse VPD set of points, provided that they satisfy a
minimum distance threshold. For example, in one imple-
mentation, FAST points are added to the sparse VPD points
if the FAST points are at least 3 pixel away from the VPD
points. In some implementations, interest points can be
derived from all or a subset of the above-described interest
point finders. In some implementations, interest points can
be identified at multiple scales. For example, interest points
can be detected from a three stage Gaussian image pyramid.
Other multi-scale image decompositions are possible.
Local Image Descriptors

After interest points are identified using one or more point
detection algorithms described above, a set of one or more
local image descriptors can be obtained from the ROI
localities surrounding each candidate point (step 110). These
local image patch descriptors can be generated using a
variety of algorithms such as histograms of oriented gradi-
ents (HoG) and Speeded Up Robust Features (SURF) which
builds upon SIFT descriptors but with better computational
efficiency using through Haar wavelets and integral images.
Local image descriptors can also be computed using a binary
local image descriptor algorithm called Fast Retina Key-
point (FREAK). Extended Multi-Radii Local Binary Pattern
(EMR-LBP) and Pattern Extended Multi-Radii Center-Sym-
metric Local Binary Patterns (PEMR-CS-LBP) are two
other binary image feature extractors. In general, these
techniques are not optimized for eye vein matching.

Pattern Histograms of EMR-LBP (PH-EMR-LBP) and
Pattern Histograms of EMR-CS-LBP (PH-EMR-CS-LBP)
as feature descriptor algorithms, described in further detail
below, are customized for eye-vein matching. Each of these
techniques can be used individually, in combination, and/or
in combination with other feature descriptor algorithms
described above to generate several image descriptors
around each interest points of an ROI.

Generally, the LBP descriptors are calculated around
interest points as follows: it is assumed that the current
interest point is at pixel location (X,,y,). The intensity values
of the immediate 8-neighbors of the center point (X,,y,),
1Ly} =1, 2, . . . 8), are compared to that of the center
point and the results are stored in K,. The intensity of a
neighbor can be less or the same as the intensity of the center
point, and the corresponding result can be a logical low
value such as “0.” If the intensity is greater, the result can be
a logical high value such as “1.” After the comparisons, and
8-bit code called LBPS8 for (x,,y,) is obtained as

LBPS = Z K; 2

In one implementation, the above-described process can
be repeated for the pixels in the outer square of LBPS, thus
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generating a 16-bit (2 byte) LBP16 code for a particular
interest point. Thus a total of 3 bytes of LBP code for each
interest point can be generated. The process can be repeated
for 5x5 pixel neighborhood of (X,,y,), yielding a total of
5x5=25 repetitions of the above LB8(1 byte)+LBP16(2
bytes) calculations surrounding a particular center point,
resulting in a 3x25=75 byte binary descriptor for each center
interest point such as (X,,y,). This 75 byte binary descriptor
is designated as Extended Multi-Radii Local Binary Patterns
(EMR-LBP). Windows are not confined to two; other sizes
are possible based on image resolution.

In a EMR-CS-LBP-based implementation, the reference
point for each pairwise pixel comparison includes the diago-
nally opposite pixel in an 8-pixel or 16-pixel neighborhood
of the center point of interest, instead of the intensity value
of'the center point, thereby leading to half the number of bits
compared to EMR-LBP features. Both EMR-LBP and
EMR-CS-LBP descriptors are binary numbers.

HoG is typically calculated using a neighborhood of a
certain size (in pixels) defined around an interest point. That
neighborhood can be divided into a predefined number of
sub regions, within which histograms of edge orientations at
certain angles can be created and collectively used as the
local descriptor for that interest point. These histogram-
based descriptors are real number vectors. In one implemen-
tation, a neighborhood of size 4x4 pixels is tiled into 2x2 sub
regions with histograms of orientations binned into 6, each
30 degrees apart, and are used as feature descriptors. In one
implementation, a neighborhood of size 4x4 pixels tiled into
33 sub regions with histograms of orientations binned into
6 bins (each 30 degrees apart) can be used as feature
descriptors.

HEMR-LBP descriptors can also be calculated using a
neighborhood of a certain size (in pixels) around the interest
point. EMR-LBP codes (as described above) for each pixel
of the neighborhood are derived. That neighborhood of
EMR-LBP codes is divided into a predefined number of sub
regions. Next, to create histograms, counts for occurrence of
each bit location within a sub-region are generated. The
concatenations of these histograms of EMR-LBP codes
across all the sub-regions can be designated as PH-EMR-
LBP features. These descriptors are real number vectors. In
various implementations, a neighborhood of size mxm pix-
els (m=4, 5, ..., 11, etc.) is tiled into nxn (n=2, 3, ..., 7,
etc.) overlapping sub regions (tiles), and the concatenation
of histograms of occurrence of each EMR-LBP bit location
within a neighborhood or a sub-region can be used as feature
descriptors. The choice of m and n can made based on the
obtained image resolution. HEMR-LBP are similar PH-
EMR-LBP but has no sub-regions as the histograms are
calculated on the entire neighborhood. HL.BP are similar to
HEMRLBP but uses just a LBP.

In one implementation, a neighborhood of size 9x9 pixels
(whose LBP8 and LBP16 codes are already generated, as
described above) are tiled into sixteen 3x3 sub regions, each
with one pixel overlap. Each 3x3 sub-region of LBP8 codes
is converted to a string of nine unsigned 8-bit numbers,
similarly LBP16 are converted to 9 unsigned 16-bit num-
bers. The unsigned 8-bit numbers of LBPS8 strings are
converted to unsigned 16-bit number strings. Histograms of
occurrence of each bit location of 9 unsigned 16-bit strings
are calculated, each can deliver a vector of length 16 bits.
Thus, each sub region can have two vectors of length 16
from LBP8 and LBP16 codes that are concatenated to
deliver a final length of 512 unsigned 16-bit numbers using
16 sub-regions (PH-EMR-LBP descriptor of the image
patch).
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PH-EMR-CS-LBP can be calculated using a neighbor-
hood of a certain size (in pixels) around the candidate point.
After generating EMR-CS-LBP codes for each pixel in the
neighborhood, that neighborhood is divided into a pre-
defined number of sub regions. Next, counts for occurrence
of each bit location within a sub-region are generated. The
concatenations of these histograms of EMR-CS-LBP codes
can provide the PH-EMR-CS-LBP features. These descrip-
tors are real numbers. A neighborhood of size mxm pixels
(m=4, 5, 6,7, 8, 9, 10, 11, etc.) can be tiled into nxn sub
regions (n=2, 3, 4, 5, 6, 7, etc.), that can have overlapping
tiles. The histograms of occurrence of each bit location
within a neighborhood or a sub-region can be used as feature
descriptors. The choice of m and n can be made based on the
obtained image resolution. HEMR-CS-LBP are similar to
PH-EMR-CS-LBP but has no sub-regions as the histograms
are derived on the entire neighborhood.

In one implementation, a neighborhood of size 7x7 pixels
(whose CS-LLBP8 and CS-LBP16 codes are already gener-
ated as described above) are tiled into nine 3x3 sub regions,
each with one pixel overlap. Each 3x3 sub-region of CS-
LBP8 and CS-LBP16 codes is converted to string of nine
unsigned 8-bit numbers for each of CS-LBP8 and CS-
LBP16 code. Histograms of occurrence of each bit location
are calculated that can yield 8 bins for CS-LBP8 and 8 bins
for CS-LBP 16. Concatenating all of the nine sub-regions
can yield a vector length of 144 unsigned 16-bit numbers
(PH-EMR-CS-LBP descriptor of the image patch).

In some implementations, feature descriptors for the
image patch around an interest point can be derived from a
single feature descriptor algorithm, or using a number of
different feature descriptor algorithms described above. For
example, one or more of the following descriptors can be
used to characterize the image patch around each interest
point for the purposes of creating a stage 1 template:
EMR-LBP, CS-LBP, HoG, SURF, PH-EMR-LBP, and PH-
EMR-CS-LBP. In some implementations, feature descrip-
tors can be derived around candidate points at multiple
image scales (yielding multi-scale feature extraction). For
example, one may detect interest points and their corre-
sponding local image descriptors using a three-stage Gauss-
ian image pyramid. Other multi-scale image decompositions
are possible.

Verification or Authentication Via Matching

In general, matching is a process of finding similarity
between one or more saved enrollment template(s) associ-
ated with a user against one or more verification template(s)
of a claimant of that identity. If the similarity of claimant’s
verification template with the enrollment template (which
can be expressed as match score) exceeds a specified thresh-
old, the claimant can be verified as an authenticated user.
Otherwise, the claimant can be rejected.

Stage 1 Pattern Matching

A stage 1 template, created at the time of enrollment or
verification (step 110), can include derived interest points
and the corresponding image feature descriptors around
them. A Hamming distance is calculated for binary descrip-
tors (FREAK, EMR-LBP and PEMR-CS-LBP) in order to
find the best matched point pairs between enrollment and
verification templates. The lower the Hamming distance the
more similar the compared points. For real valued descriptor
vectors, Euclidean, Manhattan, correlation, or Mahalanobis
distance between SURF, HoG, PH-EMR-LBP and PH-
EMR-CS-LBP descriptors of an enrollment template and the
respective SURF, HoG, PH-EMR-LBP and PH-EMR-CS-
LBP descriptors of the verification template can be com-
puted to determine if one or more of those distances satisfy
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the specified, corresponding thresholds. Other distance mea-
sures can also be used in determining matching point pairs.
In particular, one or more of the following histogram dis-
tance or similarity metrics can be used for matching histo-
gram-based image descriptors such as PH-EMR-LBP and
PH-EMR-CS-LBP: (i) a normalized absolute value of a
histogram differences (ABSNdist_j), (ii) a histogram inter-
section similarity (INTRsim_j), (iii) a correlation coefficient
similarity of histograms (CORRsim_j), and (iv) a Bhattacha-
ryya distance (BHATdist_j).

Generally, a stage 1 template includes a set of t, (interest
point, feature vectors) elements in the following format:

T={t}t~[(x,3), VA P2 ..., Vai=1,2, ... 2D

where (X,, y,) is the location of interest point i, and [Vl.l,

VAo, Vid] is a collection of d different types of descriptor
vectors that describe the local image patches around the
point of interest at pixel coordinate (x;, y,).

In some implementations, the matcher performs an
exhaustive search (step 110), calculating the distances

between each feature vector VZJ associated with a point of
interest 1, for all interest points in enrollment template and
all corresponding feature vectors of all points of interest in
the verification template, to select one or more matching
point pairs. In some implementations, a ratio test is imple-
mented so that vague correspondences, with a first to second
closest match distance ratio larger than a certain threshold,
are discarded as ambiguous katches. In other implementa-
tions, a kd-tree based technique can be used to match
features using nearest neighbor algorithms implemented by
Fast Library for Approximate Nearest Neighbors (FLANN)
matcher. This can enable faster nearest neighbor searches
among high dimensional data points.

In some implementations, a voting method across all or a
subset of descriptors V%, k=1, 2, . . . d, can be used to select
the corresponding matching points from the enrollment and
verification templates. For example, one or more points from
one template are paired with the corresponding one or more
points from the other template only if a majority of the
corresponding local image descriptors satisfy the distance
threshold. The voting method can be used when each type of
descriptor, by itself, may not reveal the same set of matched
point pairs. Therefore, in one example, if the points in the
two templates are matched using any three (at least) out of
atotal of five types of different descriptors the corresponding
points in the verification template are considered as matched
with the corresponding points in an enrollment template.
Specifically, in one example, for each point of interest if the
templates use five types of descriptors, namely, EMR-LBP,
PH-EMR-LBP, PH-EMR-CS-LBP, HoG, and SURF
descriptors, an interest point can be considered to be a
candidate for a matched point pair if PH-EMR-LBP, PH-
EMR-CS-LBP, and SURF descriptors pass the distance
threshold, but not others, indicate a match.

In some implementations employing descriptor fusion, a
single descriptor vector for an identified point can be
obtained by combining all or a subset of the different types
of descriptors used, e.g., SURF, HoG, EMR-LBP, EMR-CS-
LBP, PH-EMR-LBP, and PH-EMR-CS-LBP descriptors,
after normalizing the descriptors to be combined.

In some implementations, employing match metric based
fusion, normalized distance scores from individual compari-
sons of different descriptors between enrollment and veri-
fication templates can be combined using a weighted aver-
age before comparing to a distance threshold to find
corresponding matched pairs of interest points between the
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two templates. In multi-scale matching, the identified tem-
plate points and their descriptors from different scales (e.g.,
scale 0, scale 1, and scale 2 from an image pyramid) of one
template can be matched separately with those of the cor-
responding scales from the other template, or coordinates of
points from lower scales can be up-scaled to scale O prior to
matching.

In general, the points between two templates whose
descriptors do not meet the distance threshold can be dis-
carded from subsequent processing. Thereafter, the non-
discarded locations can be used to find the inlier subset of
point pairs between enrollment and verification images by
fitting one or more affine transformation or similar geomet-
ric transformations as described below. A derivative of the
number of inlier point pairs, their location correlations, and
the required transform scale and rotation can then be used to
generate the first stage match score. Other match score
generation methods, including those taking into account
descriptor similarity scores, can also be used.

In some implementations, a random sample consensus
(RANSACQ) or other outlier detection methods can be used
to determine the transformation needed to align candidate
points in the verification template with points of interest in
the first enrollment, where the aforesaid points are the point
pairs found in preceding descriptor match process. A
RANSAC outlier detection method can reject outliers that
do not fit a hypothesized geometric transformation between
the corresponding points in a matched point pair, e.g., in
terms of geometries of ocular regions of interest encoded in
enrollment and verification templates via vascular patterns.
For example, one or more transformation matrices can be
applied to the points from the verification template in the
matched pairs, generating a set of transformed points that are
aligned with the corresponding points of the enrollment
template in terms of their coordinates, if there is genuine
match. The involved transformation can be derived from the
largest consensus (inlier) subset of matched point pairs
based on their descriptor matches. Hypothesis based outlier
detection and image registration methods, such as
RANSAC, can be used to identify one or more affine
transformations or similar transformations that produce
transformed template locations with the most inlier point
pairs. An inlier point pair can include a point in a verification
template that can be aligned to a point in enrollment tem-
plate using a derived transformation matrix such that the
Euclidean or other distance metric between the aligned
points’ locations does not exceed a distance threshold. An
inlier point pair can also be a pair of points that yields the
closest distance in descriptor space compared to other
enrollment-verification point pairs and successfully survives
RANSAC or similar outlier detection process. The outlier
detection process assumes a geometric or limited elastic
transform between inlier point pair locations from enroll-
ment-verification template comparisons. In general, trans-
formed points from verification template that are inliers are
referred to as aligned points. The transformation of the
verification image is not performed at stage 1.

A stage 1 match score can be generated based on a
function of the correlation score of the inlier points across
the enrollment and verification templates, plus a function of
the number of inliers and recovered scale and rotation
factors from the detected transformation matrix. In some
implantations, other characterizing functions of the trans-
formation matrix or matrices can be used. In some imple-
mentations, similarity metrics other than correlation can be
used. For example, the number of inlier point pairs, N, can
be used to measure the similarity between the enrollment
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and verification templates. A high number of inlier point
pairs, for example, can indicate a higher first stage match
score than a relatively low number of inlier point pairs. In
some implementations, the correlation score is based on, for
example, a distance between registered inlier point locations
across the enrollment and verification templates, the dis-
tances between descriptors of corresponding matched points
from the enrollment and verification templates, a correlation
between the locations of the matched constellation of points
between the enrollment and verification template points, a
recovered registration scale and/or rotation between the two
templates, which may be required for geometric alignment,
or a combination of one or more of these and/or other
measures. The correlation score can be used alone or in
combination with another metric to determine the stage 1
match score.

In one example, the match score can be determined by
calculating the X, y coordinate correlation between inlier
interest points in the verification template and the corre-
sponding points in enrollment template, and multiplying the
correlation coefficient by N, i.e., the number of inlier point
pairs.

In some implementations, the stage 1 match score is a
normalized inlier pairs location’ correlation score. In other
implementations, the stage 1 match score (FMS) can be
calculated as:

Cx + Cy
( 3 ]*logz(N)

FMS =

RAVE
(1+ |1og2(Rs+o.oo1)|)*(1 +(ﬁ] ]

where C_and C, are the correlation scores between the x and
y coordinates, respectively, of the corresponding enrollment
and verification template inliers points. N is the number of
these inlier point pairs, RA is the recovered angle which
represents a change in angle resulting from the transforma-
tion of the inlier matched verification points to the enroll-
ment points, for registration, and RS is the recovered scale
which represents a change in scale resulting from that
transformation. RA and RS can be derived from the affine or
similar transformation matrix resulting from RANSAC or
similar operation that is used to identify the inlier point
pairs.

The first stage match score, in terms of a function of Cx,
Cy, N, and the transformation matrix-derived parameters,
can also be directly learned using labeled dataset of impostor
and genuine comparisons to training a classifier such as
artificial neural network or linear discriminant analysis.
Optionally, a principal component analysis (PCA) prepro-
cessing stage maybe applied before classification. In some
implementations, the local (non-binary) descriptors can be
shortened using a PCA projection to eliminate post-PCA
dimensions that do not contribute to local descriptor vari-
ances. This can improve classification accuracy while reduc-
ing feature dimensionality. The percentage of total variance
retained for each family of descriptor set can vary. For
instance, in one implementation of PCA projection and
shortening, the dimensionality of pattern histograms of
extended multi-radii local binary pattern features can be
reduced to retain about 86% of their variance post-PCA
shortening. Similarly, SURF based features can have their
dimensionality reduced to retain about 85% of original
variance through PCA, and pattern histograms of extended
multi-radii center symmetric local binary patterns can be
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shortened to retain about 95% of their variance post PCA
projection and shortening. The PCA loadings can be pre-
calculated using a training database of ocular templates.
Other percentages of variance shortening are possible; they
depend on the Sharpening methods and noise levels in an
image.

In some implementations, instead of transformation-ma-
trix-derived parameters RS and RA, another function of the
transformation can be directly calculated from the its matrix
elements. Considering the transformation matrices derived
from genuine and impostor comparisons, it is desired to
create a function of corresponding transformation matrix
elements yielding maximum genuine-impostor separation in
its distribution. One way to achieve this end is to use the
transformation matrices of a labeled dataset of impostor and
genuine comparisons to train a regression function and
maximize a measure of classifiability, such as Fisher dis-
criminant ratio.

In some implementations, when multiple image scales are
used to generate a multi-scale template of an image region,
the point coordinates (but not the corresponding descriptors)
that are not from the original scale can be multiplied by a
scaling factor to project them to the original scale, combin-
ing inlier points (i.e., the corresponding points in the inlier
point pairs) from all the scales by projecting them into the
original scale. In some implementations, the stage 1 match
score can be a weighted sum of several correlation scores
from different RANSAC transformations generated from
different combinations of interest point finders and feature
descriptor types. In some implementations, the inlier points
from the verification template can be replaced by the aligned
points of geometrically transformed template to generate the
stage 1 match score described above.

The stage 1 match score can be used, either individually
or in combination, with one or more other measures to
determine whether a verification template is similar enough
to an enrollment template, so as to authenticate a user. In
some implementations, if the recovered scale RS is below or
above certain values, and/or if the recovered angle RA is
above a certain threshold, a decision not to authenticate the
user can be made using the stage 1 match score, and a stage
2 match score is not computed. In some implementations, if
such failure to register occurs, a different or no registration
algorithm can be used to still enable the stage 2 matching
described below.

Stage 2 Pattern Matching

The verification image region is transformed (registered)
for stage 2 matcher using a transformation matrix from the
outlier detection process (e.g., RANSAC process) that can
align points of the verification image region to points of the
enrollment image region represented by the enrollment
template (step 114). In some implementations, the transfor-
mation includes one or more affine or similar transforma-
tions that are applied to the verification image region. For
example, the verification image region can be translated,
scaled, skewed, and/or rotated to generate a transformed
image region wherein points of the transformed image
region are in positions similar to the positions of correspond-
ing points in the enrollment image region.

A stage 2 match score can be generated, for example, by
matching the oriented local binary patterns of the Gabor
filtered enrollment and verification images. In some imple-
mentations, the transformed verification image region, after
filtering, is used to derive oriented local binary patterns
(OLBP) image (step 114).

In some implementations, the filtering process includes
applying several convolutional filters to the transformed
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verification image region to generate a filtered verification
image region. For example, a set of complex Gabor filters,
or a set of complex logarithm of Gabor filters, at various
angles can be applied to the transformed verification image
region (step 112). The parameters of a Gabor filter can be
determined empirically so as to account for variations in the
spacing, orientation, and girth of the blood vessels depicted
in an image region. The phase of a complex Gabor filtered
image generally reflects the vascular patterns at different
angles. The phase of the Gabor-filtered images can vary
from —m to +m radians. For example, in the phase image
filtered by a set of Gabor Kernels (for example, wave-
length=6 pixel; spread (standard deviation) in x=2.5 pixel;
spread in (standard deviation) y=2.5 pixel; angles=0°, 30°,
60°, 90°, 120°, 150°) the phase values above 0.25 and below
-0.25 radians may correspond to vascular structures.
Thresholding the phase image is not confined to 0.25 or
-0.25, and this can be changed based on application and set
of Gabor kernels used.

In some implementations, to threshold the phase image,
all values of phase above 0.25 or below -0.25 are main-
tained and the remaining values are set to zero to derive a
thresholded image. This can result in a sharper depiction of
the vasculature structure that is substantially free of noise in
the corresponding phase image. This operation can be per-
formed for images resulting from applications of several
Gabor kernels at different angles. In some implementations,
the resulting thresholded images can be added, resulting in
a filtered image designed to reveal a fine and crisp vascular
structure, such as that depicted in FIG. 6.

In some implementations, in generating stage 1 match
score, the image regions to which the interest point finder
(SURF, FAST, HS, and VPD) and/or local image descriptor
algorithms (e.g., HoG, SURF, EMR-LBP, PH-EMR-LBP,
EMR-CS-LBP and PH-EMR-CS-LBP) are applied as
described above can be the magnitude of even Gabor filtered
image region or magnitude of sum of all even Gabor filtered
image regions at different angles or phase image region or
sum of phase image regions at different angles or thresh-
olded phase image regions or sum of all the thresholded
phase image regions at different angles. In some implemen-
tations, a log Gabor kernel can replace Gabor kernel.

In general, the filtered image region can be used to derive
an OLBP template (step 114). In some implementations, the
filtered image region is a sum of thresholded phase images
at different angles. To generate OLBP image, pixel windows,
such as an example 3x3 pixel window depicted in FIG. 7A,
are created for each non-border pixel in the filtered image
region. A 3x3 pixel window generally includes a value for
a center pixel, and values for eight surrounding pixels. Pixel
windows of other sizes (e.g., 5x5, 7x7, etc.) can also be
used. The values for each pixel can indicate, for example, an
intensity of the corresponding pixel or the phase information
for the pixel. In some implementations, pixel windows are
not created for image border pixels, e.g., pixels at the outer
border of the filtered image region, because the border pixels
do not have eight surrounding pixels. Binary pixel windows
can be created that have, for each of the eight surrounding
pixels for a center pixel, a binary value that indicates
whether the surrounding pixel has a value greater or equal
than that of the center pixel, or less than the value (i.e.,
intensity or phase) of the center pixel. For example, the pixel
window in FIG. 7A is binarized to create a binary pixel
window, as depicted in FIG. 7B, which includes local high
values, i.e., “1”’s and logical low values, i.e., “0”s to indicate
which surrounding pixel values were greater or equal or,
alternatively, less than the center pixel value. For example,
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with reference to FIG. 7B, a value of “1” indicates that the
associated pixel has a pixel intensity value greater than or
equal to the pixel intensity value of the center pixel, and a
value of “0” indicates that the associated pixel has a pixel
intensity value less than the pixel intensity value of the
center pixel.

For each binary pixel window, a position that corresponds
to the center of the longest string of surrounding “1”’s (or, in
some implementations, “0”s) is identified (step 114). In the
example binary pixel window shown in FIG. 7B, the num-
bers surrounding the window indicate pixel positions, and
the longest string of surrounding “1”s is from position 0
through position 3. The center of that string of “1”s is
between positions 1 and 2, and, in this implementation, the
lesser position (i.e., position 1) is identified as the center of
the longest string of surrounding “1”’s. In some implemen-
tations, the greater position (e.g., position 2 in this example)
can be identified as the center of the longest string of Is.

After identifying the position of the center of the longest
string of surrounding “1”’s, a 4-bit binary Gray code can be
generated (step 114). A binary Gray code is string of “1”’s
and “0”s where each successive value differs by only one bit.
An example mapping position to Gray code for the example
shown in FIG. 4B is “0001” (as shown in FIG. 7C). In this
example, pixel position 1 was identified as the center of the
longest string of surrounding “1”’s, and position 1 corre-
sponds to Gray code value “0001.” This Gray code is
generated for the pixel for which the 3x3 pixel window was
created (i.e., the pixel in the center of the window depicted
in FIGS. 7A and 7B). As OLBPs and Gray codes are
identified for every non-border pixel in the filtered enroll-
ment image region, each pixel can have a 4-bit Gray code
that indicates an orientation of intensity for that pixel.

After generating a Gray code for each non-border pixel of
the filtered enrollment image region, four binary layers can
be generated for the filtered enrollment image region. Each
binary layer (e.g., in a third dimension) corresponds to one
bit of the 4-bit Gray code. For example, if a pixel at position
(10, 10) has a Gray code value of “100,” the binary value at
position (10, 10) of the first binary layer is “1,” the binary
value at position (10, 10) of the second binary layer is “1,”
the binary value at position (10, 10) of the third binary layer
is “0,” and the binary value at position (10, 10) of the fourth
binary layer is “0.” To generate stage 2 match score, a
similar procedure is applied to the transformed verification
image so as to generate a second Gray coded image, i.e., the
stage 2 verification template, which can be compared with
the first Gray coded image, i.e., the stage 2 enrollment
template.

In some implementations, each binary layer can be tiled
for enrollment-verification template comparison (step 114).
In one example implementation, the binary layers are tiled
into a 4x6 grid of 24 tiles. Tiling can avoid or minimize
regions that do not include visible vasculature and, as such,
are not significant for authentication. Tiling can also mini-
mize registration artifacts. In some implementations, invalid
tiles are identified and discarded from further analysis. For
example, if the area corresponding to a particular tile does
not include much visible eye vasculature, or includes a large
portion of the skin or iris, the tile can be determined to be
invalid. This validity determination can be made, for
example, by comparing a sum of binary values of the area
included in a tile to a threshold value, using eyelash detec-
tion algorithms, and/or using glare detection algorithms. In
some implementations, a collection of aberration pixels (e.g.
detected glare and eyelashes) that are within the white of
eye, which in turn is determined by the segmentation pro-
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cess, can be generated. Whether one or more tiles are invalid
can be determined based on the ratio of the number of
aberration pixel counts to the number of the white of the eye
pixels under the corresponding tiles.

The area of a tile within the white of an eye divided by the
total area of the tile can reflect the extent of sclera within the
tile. As such, in one implementation, tiles with less than 80%
coverage within the sclera mask can be considered invalid
and be therefore dropped. In some cases, portions of a tile
area can be occluded by glare or eyelash or eyelid or other
artifacts and occlusions, which if severe enough, can result
in the tile being invalidated. The sclera mask is typically a
binary image mask that excludes image pixels that do not
belong to white of the eye. In some implementations, a
measure of presence of vasculature can be used to discard
the non-vascular tiles. For example, the area of tile that has
the thresholded phase of Gabor values greater than zero
divided by the total area of the tile can detect the amount of
visible vasculature.

In various implementations, to determine a stage 2 match
score, each bit in each binary layer of the Gray coded stage
2 verification template is compared to a corresponding bit in
the corresponding layer of the Gray coded stage 2 enroll-
ment image (step 114). For example, four binary layers of a
stage 2 verification template can be compared in a layer-
by-layer manner against the corresponding four layers of a
stage 2 enrollment template. In some implementations, a
stage 2 match score is based on a Hamming distance
between the corresponding binary layers of the Gray coded
verification and enrollment stage 2 templates, respectively.
In some implementations, a stage 2 match score is based on
a correlation between binary layers of the Gray coded stage
2 verification and enrollment templates. Sliding window
correlation can be used to determine a correlation score for
tiles of a binary layer. In implementations where binary
layers are tiled, only the distance or correlation between
valid tiles can be used for determining stage 2 match score.
In some implementations, the Hamming distance can be
normalized, e.g., to a value between O and 1, for the entire
image region, or for each layer. For example, the normalized
Hamming distance for each layer can be a number between
0 and 1, where “1” indicates an exact match (no difference)
between binary values of a layer of the Gray coded stage 2
verification template and binary values of the corresponding
layer of the stage 2 Gray coded enrollment template, and “0”
indicates no matches. In some implementations, the corre-
lation can be normalized, e.g., to a value between -1 and 1,
for the entire image region, or for each layer.

The stage 2 match score can be generated, for example, by
adding the normalized Hamming distances calculated for
each pair of corresponding binary layer of the Gray coded
stage 2 verification and enrollment templates, resulting in a
stage 2 match score between 0 and 4. The stage 2 match
score can, in some implementations, be further normalized
to a value between 0 and 1. In some implementations, the
stage 2 match score can be generated based on a normalized
Hamming distance between tiles, e.g., by multiplying the
number of valid tiles with a mean of normalized Hamming
distance calculated across all valid tiles. For example, with
four layers and 10 valid tiles in each layer, a stage 2 match
score can be between 0 and 40, i.e., the sum of normalized
Hamming distance for each of the tiles.

In some implementations, the stage 2 match score can be
generated, for example, by adding the normalized correla-
tion score calculated for each binary layer across the Gray
coded stage 2 verification and enrollment templates, result-
ing in a stage 2 match score between —4 and 4. The stage 2
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match score can, in some implementations, be further nor-
malized to a value between -1 and 1. As another example,
the stage 2 match score can be generated based on a
normalized correlation between tiles, e.g., by multiplying
the number of valid tiles with mean of normalized correla-
tion calculated across all valid tiles. In some implementa-
tions, the stage 2 match score generated by correlation score
can be compared to a threshold to determine whether a user
providing the verification image can be authenticated. For
example, if the stage 2 match score is less than 1.0 (on a
scale of —4 to 4), the verification attempt can be rejected and
the user is determined to be unauthorized.

Fusion

In two-stage fusion, the stage 2 match score can be
combined with the stage 1 match score, to generate a third
(final) match score (step 118). As such, in some implemen-
tations, the stage 1 match score and stage 2 match score can
be multiplied and/or summed to generate the third match
score. In some implementations, the third match score can
be a weighted sum of the stage 1 match score and the stage
2 match score. Weights can be determined empirically based
on historical match records. For example, historical
instances of authentication failure and success can be ana-
lyzed to determine if the stage 1 match score is more
indicative of an actual match than the stage 2 match score,
or if certain match score values are more or less indicative
of an actual match, and the corresponding data can be used
to train one or more weights for the stage 1 and stage 2
match score. The third match score can be compared to a
threshold score to determine if a verification image matches
an enrollment image of an eye. In some implementations,
the min or max fusion rule or a linear discriminant could be
used to combine stage 1 and stage 2 match scores to generate
a third match score.

In one implementation, several stage 1 scores are
obtained, each one based on a different type of image
sharpening, a different type of descriptor and a different
RANSAC run. A weighted summation can be used to
generate a fusion match score based on the various stage 1
match scores and one stage 2 match score. In one example,
the following scores are obtained by matching stage 1
verification and enrollment templates:

Scorel=Stage 1 (Point Finder=FAST and VPD at Scale 0
and Scale 1; Feature Descriptors=EMR-LBP)

Score2=Stage 1 (Point Finder=FAST and VPD at Scale 0
and Scale 1; Feature Descriptors=PH-EMR-LBP)

Score3=Stage 1 (Point Finder=FAST and VPD at Scale 0
and Scale 1; Feature Descriptors=PH-EMR-CS-LBP)

Score4=Stage 1 (Point Finder=FAST and VPD at Scale 0
and Scale 1; Feature Descriptors=SURF)

Score5=Stage 2 score using the transformation matrix
corresponding to Score2.

The fusion score can be a weighted sum of all of the
above-described scores, given by:

Fusion Score=0.1*Scorel+0.2*Score2+0.2*Score3+
0.2*Score4+0.1*Score5

The weights and combinations in the above example are for
one implementation. Other combinations of pyramid scales,
pyramid types, point finders, and feature descriptors can be
employed. In some implementations, two or more stage 2
match scores can also be included in the fusion score.

In another implementation, the following scores are
obtained by matching stage 1 verification and enrollment
templates:

Scorel=Stage 1 (Point Finder=FAST and VPD at Scale 0
and Scale 1; Feature Descriptors=PH-EMR-LBP)
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Score2=Stage 1 (Point Finder=FAST and VPD at Scale 0
and Scale 1; Feature Descriptors=PH-EMR-CS LBP)
The fusion score can be a weighted sum of the above-
described scores, given by:

Fusion Score=0.5*Scorel+0.5*Score2

In another implementation, several stage 1 scores are
obtained by applying several different RANSAC procedures
and one stage 2 score is obtained. These scores can be
combined using a weighted summation to generate the
fusion match score. In one example, the following scores are
obtained by matching verification and enrollment templates:

Scorel=Stage 1 (Point Finder=FAST and VPD at Scale 0;
Feature Descriptors=sEMR-LBP, PH-EMR-LBP, PH-
EMR-CS-LBP, SURF, HoG; RANSAC is run on points
out of match metric based fusion)

Score2=Stage 1 (Point Finder=FAST and VPD at Scale 1;
Feature Descriptors=sEMR-LBP, PH-EMR-LBP, PH-
EMR-CS-LBP, SURF, HoG; RANSAC is run on points
out of match metric based fusion)

Score3=Stage 2 score, using the transformation matrix
derived from Scorel.

The fusion score can be a weighted sum of all of the scores,
given by:

Fusion Score=0.4*Scorel+0.3*Score2+0.3*Score3

It should be understood that the weights and combinations
used in the examples above are illustrative only, and that
other weights, number and types of descriptors, and
RANSAC runs (inlier detection procedures, in general) can
be employed. Other combinations of point finders, feature
descriptors, pyramid scales, and pyramid types for match
metric based fusion can be employed as well.

In another implementation, several stage 1 scores are
obtained by applying several different RANSAC procedures
on differently sharpened images. These scores can be com-
bined using a weighted summation to generate the fusion
match score. In one example, the following scores are
obtained by matching verification and enrollment templates:

Scorel=Stage 1 (Sharpening=[.oG based; Point
Finder=FAST and VPD at Scale 0; Feature
Descriptors=EMR-LBP, PH-EMR-LBP, PH-EMR-CS-
LBP, SURF, HoG; RANSAC is run on points out of
match metric based fusion)

Score2=Stage 1 (Sharpening=[.oG based; Point
Finder=FAST and VPD at Scale 1; Feature
Descriptors=EMR-LBP, PH-EMR-LBP, PH-EMR-CS-
LBP, SURF, HoG; RANSAC is run on points out of
match metric based fusion)

Score3=Stage 1 (Sharpening=Gabor based; Point
Finder=FAST and VPD at Scale 0; Feature
Descriptors=EMR-LBP, PH-EMR-LBP, PH-EMR-CS-
LBP, SURF, HoG; RANSAC is run on points out of
match metric based fusion)

Score4=Stage 1 (Sharpening=Gabor based; Point
Finder=FAST and VPD at Scale 1; Feature
Descriptors=EMR-LBP, PH-EMR-LBP, PH-EMR-CS-
LBP, SURF, HoG; RANSAC is run on points out of
match metric based fusion)

The fusion score can be a weighted sum of all of the scores,
given by:

Fusion Score=0.3*Scorel+0.2*Score2+0.3*Score3+
0.2*Score4

It should be understood that the weights and combinations
used in the examples above are illustrative only, and that
other weights, number and types of descriptors, and
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RANSAC runs (inlier detection procedures, in general) can
be employed. Other combinations of point finders, feature
descriptors, pyramid scales, and pyramid types for match
metric based fusion can be employed as well.

In some implementations, the fusion score is obtained
using a single enrollment and a single verification template.
In some implementations, a final match score can be gen-
erated by comparing one or more verification templates with
one or more enrollment templates. For example, if there are
two verification templates and two enrollment templates,
four fusion scores can be generated. In some implementa-
tions, the final match score can be generated using a max
rule or a sum rule. In other implementations, the match score
of the highest N' inliers points (identified via several outlier
detection runs) and/or the best quality score is selected as the
final match score. In some implementations, match scores
are generated serially until the match score reaches certain
threshold or until all or a predefined number of selected
comparisons are performed. In some implementations, the
stage 1 match score can be used in combination with a stage
2 match score to generate a third match score for determin-
ing a degree of similarity between a verification template
and an enrollment template. In some implementations, by
way of match score fusion, the stage 1 match scores can be
used to generate a third match score for determining a degree
of similarity between a verification template and an enroll-
ment template. In some implementations, by way of fusion,
the stage 2 match scores can be used to generate a third
match score for determining a degree of similarity between
a verification template and an enrollment template.
Rolling Template Update and Intelligent Template Recall for
Multi-Template Matching

FIG. 8 illustrates an example process of updating enroll-
ment templates on a rolling basis. In order to efficiently
manage several enrollment templates per each ocular ROI of
a user, the enrollment templates stored in one or more
template banks (e.g., the database 120 shown in FIGS. 1A
and 1B) can be refined and updated. The number of enroll-
ment templates to be stored can be optionally reduced at the
time of enrollment. To this end, in one implementation, the
initial N enrollment templates from each ROI are matched in
a pair-wise manner against each other, and only those
templates having the highest overall cross match scores are
stored (step 802). For example, given the initial N enroll-
ment templates, the N(N-1)/2 possible pairs are matched
assuming a symmetric distance metric. Then, the template
with the lowest median match score is excluded. The median
match score can be a median of the N-1 match scores for
each enrollment template, each one corresponding to a
comparison of the template being tested for inclusion in an
enrollment bank with the remaining N-1 enrollment tem-
plates. This procedure can be repeated to omit from the
template bank or banks one or more additional enrollment
templates.

In some implementations, a quality score is generated for
all enrollment templates and the verification template. The
verification and enrollment templates include sparse vascu-
lar points that are based on binary vascular maps (BVMs).
In some implementations, the quality score corresponding to
a template includes the ratio of true pixels (i.e., pixels
designated a logical high value) in a thinned BVM associ-
ated with the template to the number of true pixels in the
scleral mask used in generating that BVM. In another
method, quality score of an enrollment and/or verification
template can be calculated as a ratio of true pixels in a BVM
associated with the template to the number of true pixels in
the scleral mask. Quality score can provide a measure of
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amount of visible vasculature present in an ocular image in
order to assess the eligibility thereof for further processing
in a matching process. Enrollment images having a quality
score below a certain threshold are not processed for inclu-
sion in enrollment bank.

In some embodiments, the template bank or banks can be
additionally or in the alternative, updated at the time of
verification by adding qualified verification template(s) as
additional enrollment template(s) or by replacing previously
stored enrollment templates of lower quality with relatively
better quality verification templates. To qualify, an incoming
verification template has to match well with one or more
enrollment templates, and optionally pass the earlier men-
tioned quality measure for that verification template to be
added to the template bank (step 804). If the template bank
cannot store the additional template, e.g., due to memory
capacity constraint, number of enrollment templates con-
straint, etc., the least desirable previously stored enrollment
template can be excluded, e.g., using the above process (step
806). In some embodiments, the lower quality enrollment
template is preserved, nevertheless, if a larger enrollment
bank is required, e.g., due to lack of sufficiently diverse
templates from initial registration process, where diversity is
defined as a measure of externally induced variations in
templates while the genuine user scans his or her eyes under
varying conditions.

In some embodiments, an exposure profile of each tem-
plate in a multi-enrollment template system is also stored
along with the template as a measure of template diversity
(e.g., in step 108 shown in FIG. 1A). The exposure profile
of each image corresponding to a template to be saved can
be computed over a pre-registered ROI using a number of
methods. Example methods include using the camera’s
intrinsic exposure metering variables (e.g. those found in the
image’s EXIF file), using the median, (mean, standard
deviation) pair, and/or a histogram of the Y component in the
YUYV presentation of the image, or just the green layer, for
exposure profile. In the latter case, to find the exposure
similarity score between two captures, a histogram distance
measure, such as Kolmogorov-Smirnov, normalized abso-
lute difference, histogram intersection, mean squared error,
Chi-squared based distance, Kullback-Leibler divergence,
Bhattacharyya distance, or correlation coefficient, can be
used. Sensitivity towards asymmetric lighting and spatial
distribution of exposure can be increased by splitting the
image into two or four segments (or other spatial arrange-
ments, which can be overlapping), and by concatenating the
above-described exposure measures calculated per each
segment, before measuring exposure profile similarities.

The procedures described above are relatively straight-
forward statistical image similarity measures that can mostly
reveal exposure and/or lighting induced differences between
templates. To improve the accuracy of the similarity mea-
sure, the images can be pre-registered and cropped to the
ROI of choice, e.g., a bounding box of whole eye or
segmented sclera of specific gaze direction. In one imple-
mentation, pre-registration can be performed by finding a
scale from inter-ocular distance, and translation from a
combination of center of iris and/or sclera and/or eye. A
rotation angle can be determined from a line connecting the
former two points, and pre-registering can be accomplished
using a similarity geometric transformation based on the
scale, rotation angle, etc. During verification, the matching
of an incoming verification template can start with the
enrollment templates that have the most similar exposure
profiles, which can reduce the match time in the first-best
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multi-comparison, i.e. by exiting with a match decision as
soon as a match threshold is reached.

In some implementations, for exposure-aware rolling
template update, the calculated match metric is modulated
allowing for exposure diversity by providing a limited
advantage to templates having different lighting and expo-
sure conditions that those of the enrollment template (step
118, depicted in FIG. 1B). Such differences can put these
verification templates at a disadvantage otherwise because
their match scores are lower at least in part due to the
exposure difference. In general, it is beneficial not to allow
a significant exposure difference between the verification
and enrollment templates to overcome the modulated metric,
thereby erroneously allowing a close impostor template to
be added to the enrollment template bank. Therefore, for
templates T, and T,, according to one linear implementa-
tion:

enhanced_match_metric(7, 75)=a*match_score(7,
T5)+(1-a)*(min(exposure_difference(7,75),
influnce_threshold)

The influnce_threshold can ensure that the exposure dif-
ference leverage does not exceed a certain level. A suitable
influence_threshold can be determined according to param-
eter ‘a’ for best performance, over a labeled training dataset.
According to the above enhanced match metric, a rather
weak match but with a significant exposure difference
between images that produced templates T, and T, can be a
strong match without such exposure difference and, as such,
the incoming verification template can be leveraged in order
to be selected in a rolling template update. A measure of
vascularity/image quality can be added to this formula to
further ensure that templates from low-quality images (i.e.,
images lacking adequate well defined vascular structure due
to blur, reflections and occlusions, etc.) are also not selected
as enrollment templates.

In one implementation of the histogram-based exposure
similarity metric, an ocular image is cropped to the bounding
box of a scleral mask and is padded with a certain number
of pixels (e.g., about 50 pixels), or otherwise the ocular
image centered with respect to the eye. Then, a 64 bin
histogram of the green layer of each quadrant of a first and
second image is calculated. Other histograms such as 32 bin
or 128 bin histograms can also be used. These histograms are
stored alongside their corresponding templates as exposure
profiles or exposure templates. Next, histogram distance or
similarity metrics between histograms of each correspond-
ing quadrants between the pair of templates is calculated.
Specifically, the following metrics are calculated: normal-
ized absolute value of histogram differences (ABSNdist),
histogram intersection similarity (INTRsim), correlation
coeflicient similarity of histograms (CORRsim), and their
Bhattacharyya distance (BHATdist). In other implementa-
tions, fewer and/or other metrics can be used. Finally, these
metrics are combined into a single similarity metric as:

similarity=—1*ABSNdist2-1*ABSNdist1-1*AB-
SNdist3-1* ABSNdist4-1*BHATdist2-1*BHAT-
dist1-1*BHATdist3-1*BHATdist4+INTRsim2+
INTRsim1+INTRsim3+INTRsim4+
CORRsim2CORRsim1+CORRsim3+
CORRSsim4;

The higher the similarity metric, the more similar the two
templates are. Dissimilarity or exposure difference can be a
negated value of the similarity metric.

The systems and techniques described here can be imple-
mented in a computing system that includes a back end
component (e.g., as a data server), or that includes a middle-
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ware component (e.g., an application server), or that
includes a front end component (e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here), or any combination
of'such back end, middleware, or front end components. The
components of the system can be interconnected by any
form or medium of digital data communication (e.g., a
communication network). Examples of communication net-
works include a local area network (“LLAN”), a wide area
network (“WAN”), and the Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. A number of
embodiments have been described. Nevertheless, it will be
understood that various modifications may be made without
departing from the spirit and scope of the invention.

Embodiments of the subject matter and the operations
described in this specification can be implemented in digital
electronic circuitry, or in computer software, firmware, or
hardware, including the structures disclosed in this specifi-
cation and their structural equivalents, or in combinations of
one or more of them. Embodiments of the subject matter
described in this specification can be implemented as one or
more computer programs, i.e., one or more modules of
computer program instructions, encoded on computer stor-
age medium for execution by, or to control the operation of,
data processing apparatus. Alternatively or in addition, the
program instructions can be encoded on an artificially-
generated propagated signal, e.g., a machine-generated elec-
trical, optical, or electromagnetic signal, that is generated to
encode information for transmission to suitable receiver
apparatus for execution by a data processing apparatus. A
computer storage medium can be, or be included in, a
computer-readable storage device, a computer-readable stor-
age substrate, a random or serial access memory array or
device, or a combination of one or more of them. Moreover,
while a computer storage medium is not a propagated signal,
a computer storage medium can be a source or destination of
computer program instructions encoded in an artificially-
generated propagated signal. The computer storage medium
can also be, or be included in, one or more separate physical
components or media (e.g., multiple CDs, disks, or other
storage devices).

The operations described in this specification can be
implemented as operations performed by a data processing
apparatus on data stored on one or more computer-readable
storage devices or received from other sources.

The term “data processing apparatus” encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application-specific
integrated circuit). The apparatus can also include, in addi-
tion to hardware, code that creates an execution environment
for the computer program in question, e.g., code that con-
stitutes processor firmware, a protocol stack, a database
management system, an operating system, a cross-platform
runtime environment, a virtual machine, or a combination of
one or more of them. The apparatus and execution environ-
ment can realize various different computing model infra-
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structures, such as web services, distributed computing and
grid computing infrastructures.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or
interpreted languages, declarative or procedural languages,
and it can be deployed in any form, including as a stand-
alone program or as a module, component, subroutine,
object, or other unit suitable for use in a computing envi-
ronment. A computer program may, but need not, correspond
to a file in a file system. A program can be stored in a portion
of a file that holds other programs or data (e.g., one or more
scripts stored in a markup language resource), in a single file
dedicated to the program in question, or in multiple coor-
dinated files (e.g., files that store one or more modules,
sub-programs, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any
combination of one or more such back-end, middleware, or
front-end components. The components of the system can be
interconnected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN”), an inter-
network (e.g., the Internet), and peer-to-peer networks (e.g.,
ad hoc peer-to-peer networks).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data (e.g., an HTML page) to a
client device (e.g., for purposes of displaying data to and
receiving user input from a user interacting with the client
device). Data generated at the client device (e.g., a result of
the user interaction) can be received from the client device
at the server.

A system of one or more computers can be configured to
perform particular operations or actions by virtue of having
software, firmware, hardware, or a combination of them
installed on the system that in operation causes or cause the
system to perform the actions. One or more computer
programs can be configured to perform particular operations
or actions by virtue of including instructions that, when
executed by data processing apparatus, cause the apparatus
to perform the actions.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular embodiments of particular inventions. Certain
features that are described in this specification in the context
of separate embodiments can also be implemented in com-
bination in a single embodiment. Conversely, various fea-
tures that are described in the context of a single embodi-
ment can also be implemented in multiple embodiments
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separately or in any suitable subcombination. Moreover,
although features may be described above as acting in
certain combinations and even initially claimed as such, one
or more features from a claimed combination can in some
cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination.
Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi-
ments, and it should be understood that the described
program components and systems can generally be inte-
grated together in a single software product or packaged into
multiple software products.
Thus, particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. In some cases, the actions recited in
the claims can be performed in a different order and still
achieve desirable results. In addition, the processes depicted
in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain implementations, multitasking
and parallel processing may be advantageous.
What is claimed is:
1. A computer-implemented method comprising:
identifying a plurality of matching point pairs, each pair
comprising a first point selected from a plurality of first
points of a verification template and a matching second
point selected from a plurality of second points of an
enrollment template, each first point comprising: (i) a
location of a point of interest in a verification image
corresponding to the verification template, and (ii) a
descriptor describing a locality surrounding the point of
interest in the verification image, and each second point
comprising: (i) a location of a point of interest of an
enrollment image corresponding to the enrollment tem-
plate, and (ii) a descriptor describing a locality sur-
rounding the point of interest in the enrollment image;

obtaining a plurality of inlier point pairs selected from the
plurality of matching point pairs, and a corresponding
geometric transformation; and

calculating a match score based on, at least one of: (i) the

plurality of inlier point pairs, and (ii) the geometric

transformation, wherein calculating the match score

comprises computing a first match score by:

computing a correlation value between coordinates of
points, across the verification and enrollment tem-
plates, of the inlier point pairs; and

modifying the correlation value using a function of a
number of the inlier point pairs and one or more
parameters of the geometric transformation, to
obtain the first match score.

2. The method of claim 1, wherein identifying the plu-
rality of matching point pairs comprises, for each first point
in the verification template:

calculating respective distances between the descriptors

associated with the first point and descriptors associ-
ated with a plurality of the second points of the enroll-
ment template; and

designating one of the second points as corresponding to

the first point based on the respective distances, thereby
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forming a match point pair comprising the first point
and the corresponding second point.

3. The method of claim 2, wherein calculating a respective
distance between the descriptors associated with a particular
first point in the verification template and descriptors asso-
ciated with a second point of the enrollment template
comprises:

calculating a distance between each descriptor associated

with the particular first point and each corresponding
descriptor of the second point of the enrollment tem-
plate; and

combining the calculated distances as a weighted average

to obtain the distance between the descriptors associ-
ated with the particular first point and the descriptors
associated with the second point of the enrollment
template.

4. The method of claim 1, wherein identitying the plu-
rality of matching point pairs comprises, for each first point
in the verification template:

calculating respective distances between each of the

descriptors associated with the first point and a corre-
sponding descriptor associated with one or more sec-
ond points of the enrollment template; and

counting a number of distances not exceeding respective

distance thresholds; and

designating one of the second points as corresponding to

the first point based on the count of the number of
distances, thereby forming a match point pair compris-
ing the first point and the corresponding second point.

5. The method of claim 4, wherein calculating respective
distances comprises calculating at least one of a Hamming
distance, a Euclidean distance, a Manhattan distance, a
correlation, and a Mahalanobis distance.

6. The method of claim 1, wherein a particular descriptor
was derived using Extended Multi-Radii Local Binary Pat-
terns (EMR-LBP), Pattern Histograms of Extended Multi-
Radii Local Binary Patterns (PH-EMR-LBP), Pattern
Extended Multi-Radii Center Symmetric Local Binary Pat-
terns (PEMR-CS-LBP), Pattern Histograms of EMR-CS-
LBPs (PH-EMR-CS-LBP), tiled EMR-IBP, tiled PH-EMR-
LBP, tiled PEMR-CS-LBP, or tiled PH-EMR-CS-LBP.

7. The method of claim 1, wherein obtaining the plurality
of inlier point pairs comprises using random sample con-
sensus (RANSAC), M-estimator sample and consensus
(MSAC), or GROUPSAC to align the first points to the
corresponding second points.

8. The method of claim 1, wherein the parameter com-
prises one or more of: a change in scale of the verification
image as a result of the calculated registration geometric
transformation and a change in angle of the verification
image as a result of the geometric calculated registration
transformation.

9. The method of claim 1, wherein computing the match
score comprises computing a second match score by:

applying the geometric transformation to the verification

image to create a transformed image;
filtering and encoding oriented local binary pattern ver-
sions of the transformed image and the image corre-
sponding to the enrollment template, each version
comprising a plurality of layers wherein each layer
corresponds to a distinct dimension of the encoding;

comparing one or more corresponding tiles in each layer
of the encoded transformed image and the encoded
image corresponding to the enrollment template to
obtain a respective layer measure for each layer; and

aggregating the layer measures to obtain the second match
score.
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10. The method of claim 9, wherein the filtering com-
prises Gabor filtering or logarithm of Gabor filtering.

11. The method of claim 9, wherein the encoding com-
prises Gray coding.

12. The method of claim 9, further comprising excluding,
prior to comparing, one or more tiles corresponding to a
region substantially lacking visible vasculature.

13. The method of claim 9, wherein the comparing
corresponding tiles comprises calculating a Hamming dis-
tance, a normalized Hamming distance, or a sliding window
correlation between the corresponding tiles.

14. The method of claim 9, further comprising:

computing the match score as a weighted sum of the first

match score and the second match score.

15. The method of claim 14, wherein:

the correlation value comprises

Cx +Cy
—

the coordinates comprise A and Y coordinates, Cx and Cy
being correlations of the X and Y coordinates, respectively;
and

the modification comprises:

Cx+ Cy
( 5 ]* log, (V)

RAY
(1+ |1og2(Rs+o.oo1)|)*(1 +(ﬁ] ]

N being the number of the inlier point pairs, RS being a
change in scale of the verification image as a result of the
calculated registration geometric transformation, and RA
being a change in angle of the verification image as a result
of the calculated registration geometric transformation.

16. The method of claim 14, further comprising excluding
the first match score from the match score if at least one
parameter of the geometric transformation lies outside a
nominal range of that parameter.

17. A system comprising:

a memory having instructions stored thereon; and

a processor programmed to execute the instructions to

perform operations comprising:

identifying a plurality of matching point pairs, each
pair comprising a first point selected from a plurality
of first points of a verification template and a match-
ing second point selected from a plurality of second
points of an enrollment template, each first point
comprising: (i) a location of a point of interest in a
verification image corresponding to the verification
template, and (ii) a descriptor describing a locality
surrounding the point of interest in the verification
image, and each second point comprising: (i) a
location of a point of interest of an enrollment image
corresponding to the enrollment template, and (ii) a
descriptor describing a locality surrounding the point
of interest in the enrollment image;

obtaining a plurality of inlier point pairs selected from
the plurality of matching point pairs, and a corre-
sponding geometric transformation; and

calculating a match score based on, at least one of: (i)
the plurality of inlier point pairs, and (ii) the geo-
metric transformation, wherein to calculate the
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match score the processor is programmed further for

computing a first match score by:

computing a correlation value between coordinates
of points, across the verification and enrollment
templates, of the inlier point pairs; and

modifying the correlation value using a function of a
number of the inlier point pairs and one or more
parameters of the geometric transformation, to
obtain the first match score.

18. The system of claim 17, wherein to identify the
plurality of matching point pairs, the processor is pro-
grammed further for, for each first point in the verification
template:

calculating respective distances between the descriptors

associated with the first point and descriptors associ-
ated with a plurality of the second points of the enroll-
ment template; and

designating one of the second points as corresponding to

the first point based on the respective distances, thereby
forming a match point pair comprising the first point
and the corresponding second point.

19. The system of claim 18, wherein to calculate a
respective distance between the descriptors associated with
a particular first point in the verification template and
descriptors associated with a second point of the enrollment
template, the processor is programmed further for:

calculating a distance between each descriptor associated

with the particular first point and each corresponding
descriptor of the second point of the enrollment tem-
plate; and

combining the calculated distances as a weighted average

to obtain the distance between the descriptors associ-
ated with the particular first point and the descriptors
associated with the second point of the enrollment
template.

20. The system of claim 17, wherein to identify the
plurality of matching point pairs, the processor is pro-
grammed further for, for each first point in the verification
template:

calculating respective distances between each of the

descriptors associated with the first point and a corre-
sponding descriptor associated with one or more sec-
ond points of the enrollment template; and

counting a number of distances not exceeding respective

distance thresholds; and

designating one of the second points as corresponding to

the first point based on the count of the number of
distances, thereby forming a match point pair compris-
ing the first point and the corresponding second point.

21. The system of claim 17, wherein a particular descrip-
tor was derived using Extended Multi-Radii Local Binary
Patterns (EMR-LBP), Pattern Histograms of Extended
Multi-Radii Local Binary Patterns (PH-EMR-LBP), Pattern
Extended Multi-Radii Center Symmetric Local Binary Pat-
terns (PEMR-CS-LBP), Pattern Histograms of EMR-CS-
LBPs (PH-EMR-CS-LBP), tiled EMR-LBP, tiled PH-EMR-
LBP tiled PEMR-CS-LBP, or tiled PH-EMR-CS-LBP.

22. The system of claim 17, wherein the parameter
comprises one or more of: a change in scale of the verifi-
cation image as a result of the calculated registration geo-
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metric transformation and a change in angle of the verifi-
cation image as a result of the geometric calculated
registration transformation.

23. The system of claim 17, wherein to compute the match
score, the processor is programmed further for computing a
second match score by:

applying the geometric transformation to the verification

image to create a transformed image;
filtering and encoding oriented local binary pattern ver-
sions of the transformed image and the image corre-
sponding to the enrollment template, each version
comprising a plurality of layers wherein each layer
corresponds to a distinct dimension of the encoding;

comparing one or more corresponding tiles in each layer
of the encoded transformed image and the encoded
image corresponding to the enrollment template to
obtain a respective layer measure for each layer; and

aggregating the layer measures to obtain the second match
score.

24. The system of claim 23, wherein the processor is
programmed further for excluding, prior to comparing, one
or more tiles corresponding to a region substantially lacking
visible vasculature.

25. The system of claim 23, wherein to compare corre-
sponding tiles, the processor is programmed further for
calculating a Hamming distance, a normalized Hamming
distance, or a sliding window correlation between the cor-
responding tiles.

26. The system of claim 23, wherein the processor is
programmed further for:

computing the match score as a weighted sum of the first

match score and the second match score.

27. The system of claim 26, wherein:

the correlation value comprises

Cx +Cy
7

the coordinates comprise A and Y coordinates, Cx and Cy
being correlations of the X and Y coordinates, respectively;
and

the modification comprises:

Cx+ Cy
( 5 ]*logz(N)

RAY
(1+ |1og2(Rs+o.oo1)|)*(1 +(ﬁ] ]

N being the number of the inlier point pairs, RS being a
change in scale of the verification image as a result of the
calculated registration geometric transformation, and RA
being a change in angle of the verification image as a result
of the calculated registration geometric transformation.

28. The system of claim 26, wherein the processor is
programmed further for excluding the first match score from
the match score if at least one parameter of the geometric
transformation lies outside a nominal range of that param-
eter.



